Degradation of albumin and aromatic amino acids in reactions with radicals OH● and under the influence of UV radiation 253.7 nm
- Authors: Piskarev I.M.1
-
Affiliations:
- D.V. Skobeltsyn Research Institute of Nuclear Physics, Lomonosov Moscow State University
- Issue: Vol 59, No 5 (2025)
- Pages: 344-350
- Section: RADIATION CHEMISTRY
- URL: https://kazanmedjournal.ru/0023-1193/article/view/690715
- DOI: https://doi.org/10.31857/S0023119325050069
- EDN: https://elibrary.ru/bkxsdd
- ID: 690715
Cite item
Abstract
Oxidative degradation of bovine serum albumin, a mixture of fluorescent amino acids tyrosine, tryptophan and phenylalanine and separately the same aromatic amino acids included in albumin, under the action of hydroxyl and hydroperoxyl radicals and UV radiationl = 253.7 nm was studied. The starting substances and reaction products were identified by fluorescence method in two-dimensional scanning mode. Stern-Folmer fluorescence quenching coefficients were calculated to analyze the results. Based on the Stern-Folmer coefficients, the reaction mechanisms of radicals and UV radiation with protein and individual amino acids are compared.
Keywords
About the authors
I. M. Piskarev
D.V. Skobeltsyn Research Institute of Nuclear Physics, Lomonosov Moscow State University
Email: i.m.piskarev@gmail.com
Moscow, 119234, Russia
References
- Kehm R., Baldensperger T., Raupbah J., Hohn A. // Redox Biology., 42. 101901. (2021).
- Pattison D. I., Rahmanto A. S., M. J. Davies M. J. // Photochem. Photobiol. Sci. 11. p. 38. (2012).
- Bellmaine S., Schnellbaecher A., Zimmer A. // Free Radical Biology and Medicine. 160. p. 696. (2020).
- Recky R. N., Serrano M. P., Dantola M. I., Lorente C. // Free Radical Biology and Medicine. 165. p. 360. (2021).
- Gatin A., Billault L., Duchambon P., Van der Rest G. // Free Radical Biology and Medicine. 162. p. 461. (2021).
- Wang L., Su D., Berry S. N., Lee J., Chang Y.-T. // Chem. Commun. 53. 12465. (2017).
- Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs W. // PNAS. 107. no.2. p. 14390. (2010).
- Roca-Sanjuan S. and D. // ACS Omega. 9, 35356. (2024).
- Jin F., Leitich J., von Sonntag C. // J. pf Photochemistry and Photobiology. A. Chemistry. 85. p. 101. (1995).
- Scappini F., Capobianco M. L., Casadei F., Zamboni R., Giorgianni P. // International Journal of Astrobiology. 6(4). P. 281. (2007).
- Piskarev I. M. // High Energy Chemistry. 58. №.5. p. 480. (2024).
- Piskarev I. M., Ivanova I. P. // Plasma Sources Sci. Technol. 28. 085008 (10 pp). (2019).
- Piskarev I. M., Ivanova I. P. // Plasma Chemistry and Plasma Processing. 41. p. 447. (2021).
- Piskarev I. M. // IEEE Transactions on Plasma Science. 49(4). 2021.
- Woods R. J., Pikaev A. K. “Applied radiation chemistry. Radiation processing.” John Wiley & Sons. Inc. New York. (1993).
- Luo Yu-Ran. “Handbook of bond dissociation energies in organic compounds.” CRC Press LLC. Boca Raton. London. New York. Washington. P. 1–94. (2003).
- Gehlen M. H. // J. of Photochemistry and Photobiology. C. Photpchemistry Reviews. 42. 100338. (2020).
- Graves D. B. // J. Phys. D: Appl. Phys.v. 45. 263001. (42pp). (2012).
Supplementary files
