The Effect of Moisture on the Characteristics of Co-Incineration of Pulp and Paper Sludge and Municipal Waste

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The combustion behavior of a wet mixture of sludge from a pulp and paper plant and municipal waste is analyzed through complementary experiments. The collected mixed sludge was first naturally dried to decrease its initial moisture percentage to 5–9%. Pure water with mass proportions between 30 and 60% was added to the naturally dried samples to analyze their combustion behavior. Thermogravimetric experiments were carried out on the dried and humidified samples under air and applying heating rates between 5 and 100°C/min. The thermogravimetric profiles and the heat flows of the dried and humidified samples were compared. The CO, CO2, and total hydrocarbons emissions were measured during further combustion experiments carried out under isothermal temperatures of 600, 700, 800, or 900°C.

Sobre autores

P. Maryandyshev

Northern (Arctic) Federal University

Email: p.marjyandishev@narfu.ru
163000 Arkhangelsk, Russia

A. Brillard

Universite de Haute-Alsace

Email: alain.brillard@uha.fr
68100 Mulhouse, France

A. Terekhin

Northern (Arctic) Federal University

Email: trhnlx@yandex.ru
163000 Arkhangelsk, Russia

Bibliografia

  1. Gavrilescu D. // Environmental Engineering and Management Journal. 2008. V. 7. P. 537. https://doi.org/10.30638/eemj.2008.077
  2. Bajpai P. Pretreatment of Sludge. In: Management of Pulp and Paper Mill Waste. Springer International Publishing, Cham. 2015. P. 31.
  3. Huilinnir C., Villegas M. // Bioresource Technology. 2014. V. 157. P. 206. https://doi.org/10.1016/j.biortech.2014.01.109
  4. Zawieja I. // Desalination and Water Treatment 2023. V. 301. P. 277. https://doi.org/10.5004/dwt.2023.29790
  5. Hu J., Shen Y., Zhu N. // Waste Management. 2023. V. 169. P. 70. https://doi.org/10.1016/j.wasman.2023.06.033
  6. Yaras A., Demirel B., Akkurt F., Arslanoglu H. // Biomass Conversion and Biorefinery. 2021. V. 13. P. 2007. https://doi.org/10.1007/s13399-020-01232-9
  7. Yu Y.H., Kim S.D., Lee J.M., Lee K.H. // Energy. 2002. V. 27. P. 457. https://doi.org/10.1016/S0360-5442(01)00097-4
  8. Chiang K.-Y., Lu C.-H., Liao C.-K., Hsien-Ruen Ger R. // International Journal of Hydrogen Energy. 2016. V. 41. P. 21641. https://doi.org/10.1016/j.ijhydene.2016.06.199
  9. Coimbra R.N., Paniagua S., Escapa C., Calvo L.F., Otero M. // Renewable Energy. 2015. V. 83. P. 1050. https://doi.org/10.1016/j.renene.2015.05.046
  10. Yin Y., Yin H., Yuan Z., Wu Z., Zhang W., Tian H., Feng L., Cheng S., Qing M., Song Q. // BioEnergy Research. 2021. V. 14. P. 1289. https://doi.org/10.1007/s12155-021-10248-6
  11. Lin Y., Ma X., Peng X., Yu Z., Fang S., Lin Y., Fan Y. // Fuel. 2016. V. 181. P. 905. https://doi.org/10.1016/j.fuel.2016.05.031
  12. Shao J., Yuan X., Leng L., Huang H., Jiang L., Wang H., Chen X., Zeng G. // Bioresource Technology. 2015. V. 198. P. 16. https://doi.org/10.1016/j.biortech.2015.08.147
  13. Kangash A., Kehrli D., Brillard A., Maryandyshev P., Trouve G., Lyubov V., Brilhac J.-F. // Fuel. 2022. V. 316. P. 123343. https://doi.org/10.1016/j.fuel.2022.123343
  14. Ling W., Xing Y., Hong C., Zhang B., Hu J., Zhao C., Wang Y., Feng L. // Science of The Total Environment. 2022. V. 845. P. 157376. https://doi.org/10.1016/j.scitotenv.2022.157376
  15. Gong K., Li X., Liu H., Cheng X., Sun D., Shao Q., Dong M., Liu C., Wu S., Ding T., Qiu B., Guo Z. // Carbon. 2020. V. 156. P. 320. https://doi.org/https://doi.org/10.1016/j.carbon.2019.09.046

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025