Thermolysis of Brown Coal in Water in the Presence of a Catalytic Additive Based on Iron Oxides
- Autores: Kopytov M.A.1, Boyar S.V.1
 - 
							Afiliações: 
							
- Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
 
 - Edição: Nº 2-3 (2023)
 - Páginas: 16-19
 - Seção: Articles
 - URL: https://kazanmedjournal.ru/0023-1177/article/view/661864
 - DOI: https://doi.org/10.31857/S0023117723020068
 - EDN: https://elibrary.ru/BFVUSG
 - ID: 661864
 
Citar
Texto integral
Resumo
The thermolysis of brown coal was carried out at temperatures of 360 and 380°C in water without a catalytic additive and in the presence of a catalyst based on iron oxides, and the composition of the products was studied. It was shown that the use of a catalytic additive in the course of the thermolysis of coal in water led to an increase in the yield of liquid and gaseous hydrocarbons; in this case, the fraction of maltenes in liquid products increased, and the concentrations of hydrogen and carbon oxides in gaseous products increased significantly.
Palavras-chave
Sobre autores
M. Kopytov
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kma@ipc.tsc.ru
				                					                																			                												                								Tomsk, 634055 Russia						
S. Boyar
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: bsv@ipc.tsc.ru
				                					                																			                												                								Tomsk, 634055 Russia						
Bibliografia
- Ashida R., Morimoto M., Makino Y., Umemoto S., Nakagawa H., Miura K., Saito K., Kato K. // Fuel. 2009. V. 88. № 8. P. 1485.
 - Li C.Z. // Fuel. 2007. V. 86. № 12–13. P. 1664.
 - Fedyaeva O.N., Vostrikov A.A., Shishkin A.V., Sokol M.Ya., Fedorova N.I., Kashirtsev V.A. // J. Supercrit. Fluids. 2012. V. 62. P. 155.
 - Sakaguchi M., Laursen K., Nakagawa H., Miura K. // Fuel Process. Technol. 2008. V. 89. № 4. P. 391.
 - Morimoto M., Nakagawa H., Miura K. // Energy and Fuels. 2010. V. 24. № 5. P. 3060.
 - Wang Z., Shui H., Pei Z., Gao J. // Fuel. 2008. V. 87. № 4–5. P. 527.
 - Zeng C., Favas G., Wu H., Chaffee A.L., Hayashi J., Li C.-Z. // Energy and Fuels. 2006. V. 20. № 1. P. 281.
 - Zeng C., Clayton S., Wu H., Hayashi J., Li C.-Z. // Energy and Fuels. 2007. V. 21. № 2. P. 399.
 - Копытов М.А., Головко А.К. // ХТТ. 2013. № 6. С. 59. [Solid Fuel Chemistry, 2013, vol. 47, no. 6, p. 370. https://doi.org/10.3103/S0361521913060049]https://doi.org/10.7868/S0023117713060042
 - Нальгиева Х.В., Копытов М.А., Чешкова Т.В., Кривцов Е.Б., Мамонтов Г.В. // Нефть. Газ. Новации. 2021. № 6. С. 13.
 - Липович В.Г., Калабин Г.А., Калечиц И.В. Химия и переработка угля. М.: Химия, 1988. 336 с.
 - Головко А.К., Копытов М.А., Шаронова О.М., Кирик Н.П., Аншиц А.Г. // Катализ в промышленности. 2015. № 4. С. 65. [Catalysis in Industry. 2015, vol. 7, no. 4, p. 293. https://doi.org/10.1134/S2070050415040078]
 - Камьянов В.Ф. Химический состав нефтей Западной Сибири. Новосибирск: Наука, 1988. 288 с.
 
Arquivos suplementares
				
			
						
						
					
						
						
									


