Influence of microwave irrigation on the adsorption process of 2,4-dichlorophenoxyacetic acid by microporous activated carbon
- Authors: Vedenyapina M.D.1, Kulaishin S.A.1, Konstantinov G.I.2, Tsodikov M.V.2
-
Affiliations:
- Zelinsky Institute of Organic Chemistry of the RAS
- Topchiev Institute of Physics RAS
- Issue: No 4 (2025)
- Pages: 22-28
- Section: Articles
- URL: https://kazanmedjournal.ru/0023-1177/article/view/691076
- DOI: https://doi.org/10.31857/S0023117725040026
- EDN: https://elibrary.ru/lvpgqg
- ID: 691076
Cite item
Abstract
The efficiency of microwave irradiation of a microporous sample of coconut shell activated carbon was assessed using physicochemical methods. After each “adsorption–microwave irradiation” cycle, the parameters of the adsorbent's porous structure and adsorption characteristics relative to the original sample were determined. It was shown that the microwave irradiation method is not suitable for microporous samples of coconut shell activated carbons during adsorption of 2,4-dichlorophenoxyacetic acid herbicide on them.
About the authors
M. D. Vedenyapina
Zelinsky Institute of Organic Chemistry of the RAS
Email: mvedenyapina@yandex.ru
119991 Moscow, Russia
S. A. Kulaishin
Zelinsky Institute of Organic Chemistry of the RAS
Email: s.kulaishin@mail.ru
119991 Moscow, Russia
G. I. Konstantinov
Topchiev Institute of Physics RAS
Email: konstantinov@ips.ac.ru
119071 Moscow, Russia
M. V. Tsodikov
Topchiev Institute of Physics RAS
Email: tsodikov@ips.ac.ru
119071 Moscow, Russia
References
- Vedenyapina M.D., Kurmysheva A. Yu., Kulaishin S.A. // Solid Fuel Chemistry. 2024. V. 58. P. 24. https://doi.org/10.3103/S0361521924010099
- DiStefano R., Feliciano T., Mimna R.A., Redding A.M., Matthis J. // Remediation Journal. 2022. V. 32. I. 4. P. 231. https://doi.org/10.1002/rem.21735
- Corbett H., Solan B., Tretsiakova-McNally S., Fernandez-Ibanez P., McDermott R. // Sustainability. 2024. V. 16. I. 23. 10595. https://doi.org/10.3390/su162310595
- Gagliano E., Falciglia P.P., Zaker Y., Birben N.C., Karanfil T., Roccaro P. // Current Opinion in Chemical Engineering. 2023. V. 42. 100955. https://doi.org/10.1016/j.coche.2023.100955
- Zhang Y., Thomas A., Apul O., Venkatesan A.K. // Journal of Hazardous Materials. 2023. V. 460. 132378. https://doi.org/10.1016/j.jhazmat.2023.132378
- Hatinoglu D., Edwards L., Turzo P.I., Hanigan D., Apul O.G. // Journal of Hazardous Materials. 2025. V. 491. 137885. https://doi.org/10.1016/j.jhazmat.2025.137885
- Svabova M., Svab M., Vorokhta M. // Journal of Water Process Engineering. 2024. V. 67. Р. 106189. https://doi.org/10.1016/j.jwpe.2024.106189
- Vedenyapina M.D., Kulaishin S.A., Chistyakov A.V., Rakishev A.K., Bulkin S.A., Tsodikov M.V., Konstantinov G.I. // Solid Fuel Chemistry. 2024. V. 58. P. 472. https://doi.org/10.3103/S0361521924700381
- Цодиков М.В., Передерий М.А., Чистяков А.В., Константинов Г.И., Мартынов Б.И. // ХТТ. 2012. № 1. С. 39. [Solid Fuel Chemistry. 2012. V. 46. I. 1. P. 37. https://doi.org/10.3103/S0361521912010132].
- Цодиков М.В., Передерий М.А., Чистяков А.В., Константинов Г.И., Кадиев Х.М., Хаджиев С.Н. // ХТТ. 2012. № 2. С. 55. [Solid Fuel Chemistry. 2012. V. 46. I. 2. P. 121. https://doi.org/10.3103/S0361521912020115].
- Качала В.В., Хемчян Л.Л., Кашин А.С., Орлов Н.В., Грачев А.А., Залесский С.С., Анаников В.П. // Успехи химии. 2013. Т. 82. В. 7. C. 648. https://doi.org/10.1070/RC2013v082n07ABEH004413 [Russian Chemical Reviews. 2013. V. 82. I. 7. P. 648. https://doi.org/10.1070/RC2013v082n07ABEH004413].
- Mikhail R. Sh., Brunauer S., Bodor E.E. // Journal of Colloid and Interface Science. 1968. V. 26. I. 1. P. 45. https://doi.org/10.1016/0021-9797(68)90270-1
- Shahvan T. // Chemical Engineering Research and Design. 2015. V. 96. P. 172. https://doi.org/10.1016/j.cherd.2015.03.001.
- Kurmysheva A. Yu., Vedenyapina M.D., Kulaishin S.A. // Solid Fuel Chemistry. 2022. V. 56. I. 6. P. 441. https://doi.org/10.3103/S0361521922060064.
- Shahvan T. // Journal of Environmental Chemical Engineering. 2014. V. 2. I. 2. P. 1001.
Supplementary files
