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ABSTRACT

Introduction. Public health in urban areas is of paramount importance, particularly in the context of smart cities where technology plays a vital role. The integration
of sophisticated infrastructure and data-driven systems in smart cities has the potential to significantly enhance public health outcomes. This improvement hinges on
optimizing various factors, especially in the realms of hygiene standards and pollution monitoring. The ability to adhere to stringent hygiene procedures and closely
monitor pollutants is essential for mitigating health risks in densely populated urban environments. As metropolitan areas become increasingly complex, there is a
pressing need to prioritize the optimization of these processes.

Materials and Methods. To address the challenges associated with public health optimization in smart cities, this study introduces Optimized Public Wellness using
Machine Learning (OPWML). OPWML employs advanced machine learning techniques to augment hygiene protocols and pollution surveillance in smart urban
areas. The proposed approach incorporates real-time validation, enhanced data-collecting efficiency, intelligent intervention impact, and increased throughput.
The methodology aims to streamline processes and overcome the limitations of current approaches, providing more precise and prompt outcomes.

Results. Simulation findings demonstrate the superior performance of OPWML compared to other methods. The average estimate accuracy achieved by
OPWML is 86.76%, showcasing its efficacy in delivering accurate results. Real-time validation latency is notably low at 12.99 ms, indicating the system’s
responsiveness. With a data collection efficiency of 22.96 GB/hour, OPWML demonstrates its ability to efficiently gather relevant data. The smart intervention
impact of 33.20% underscores the system’s effectiveness in implementing intelligent interventions. Additionally, the throughput of 314.67 kbps signifies the high
processing capacity of OPWML.

Limitations. While OPWML exhibits promising results, it is essential to acknowledge certain limitations in this study. The simulation-based nature of the findings
may not fully capture real-world complexities. Additionally, the generalizability of the results to diverse urban contexts requires further investigation. Limitations
such as data privacy concerns and potential technological barriers should also be considered when implementing OPWML in practical settings.

Conclusion. In conclusion, Optimized Public Wellness using Machine Learning (OPWML) emerges as a powerful tool for transforming public health processes in
smart cities. The study highlights OPWML’s capacity to significantly enhance hygiene protocols and pollution surveillance, ensuring a healthier and environmentally
sustainable urban setting. While acknowledging certain study limitations, the overall outcomes emphasize the potential of OPWML in revolutionizing public health
practices and contributing to the well-being of urban populations in the era of smart cities.
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MawwmHHoe 06yueHune pns 061 eCcTBeHHOro 34,0POBbS:
ONTUMMU3ALUS TMTMEHUYECKUX MEPONPUATUA U MOHUTOPUHT
3arpsa3HeHUM B YMHbIX FOPOAAax

Yuusepceurer Kanuuru, Haiis Paitnyp Yxartucrapx, 492101, Unpus

PE3IOME

Beedenue. Oowecmeennoe 300pogve Ha meppumopuu 20p0008 umeem 0codeHHoe 3HaueHue, 0COOCHHO 8 KOHMEKCme YMHbIX 20p0008, e0e mexHoA02Us uepaem
JHCUBHEHHO 8AXNCHYIO poab. MHnmeepuposanue MoOepHU3UPOBAHHOU UHDPACMPYKMYPbL U CUCEM 00pabomKu OaHHbIX 8 YMHbIX 20podax obaadaem nomeHuu-
anom 0ns 3aMemHo20 yayquleHus odujecmeenHHo2o 300pogbs. Takoe yayuuienue 3agucum om onMUMU3AUUL MHORUX (AKMOPO8, 0COOEHHO 6 0a3ax OGHHbIX
2UcUeHUHeCKUX cmandapmos u MoHumopunea 3aepsznenuii. CnocobHocms npudepicusamscs cmpo2oeo cooa0eHUs USUeHUHeCKUX nPouedyp u miuyamenbHo2o
MOHUMOPUH2A 3A2PAZHAIOUUX A2eHMO8 He00X00UMA 045 YCMPAHEHUS. IKOA0UMECKUX PUCKOE 0451 300P08bsl 8 20p00aX € BbICOKOU NAOMHOCMbI0 HaceaeHus. [1o-
CKOAbKY Meppumopuu KpynHuix 20po0o8 CaHosames 6cé 6onee KOMNAEKCHOIMU, CYuecmeayem Hapacmarouas Heobxoo0umocms 8 npuopumeme onmumMu3ayuu
2MUX NPOUECCos.

Mamepuaavt u memoovt. /[ns pewerus npo6aem, C8a3aHHBIX C ONMUMU3AYUUEL 00UECMBEHHO20 300P0BbS 8 YMHbIX 20P00AX, 8 IMOM UCCAe008AHUU Npediaza-
emcss Onmumusuposantoe obuecmeeHHoe 300posve, Uchoav3youee mauuntoe ooyuenue (003MO). OO3MO peanuszyem mMoOepHU3UPOBAHHbBIE MEMOObL MA-
WUHHO20 06YHeHUs 0051 YCOBEPUIEHCMB08AHUS 2UCUEHUYECKUX NPOMOKO0A08 U KOHMPOAs 3a2PA3HeHUN HA MeppUmopusax yMHsix 20podos. [pedaodcennsiii nooxod
BKAIOUACT OUEHKY 8 PeaNbHOM 6PeMeHU, NoGbllueHuUe IhpeKkmusHocmu coopa OGHHbIX, GAUAHUE UHMEANEKMYAAbHbIX UHMEP8CHUUI U YeeauteHUe NPONYCKHOU
cnocobnocmu. Memodonoeus nayeneHa Ha NPoYeccLl ONMUMUIAUUY U NPe0doNeHUe 02PAHUYEHUI NPUMEHAEMbIX N00X0008 045 NOAYHeHus bonee MOUHbBIX U
ObICMPbIX Pe3YAbMAMO8.

Pesyavmamut. Jlannvie modeauposanus noomeepicoarom npegocxoocmeo npumenenus O03MO 6 cpasnenuu ¢ dpyeumu memodamu. Tounocms cpedueil oyen-
Ku, docmueaemas ¢ OO3MO, cocmaensiem 86,76%, Oemoncmpupys eé ek mugHocms 6 noAyHeHUU MOHHbIX Pe3YAbMAmMos. 3a0epiucKa aaudayul 8 peaib-
HOM 8pemenu 00604bHO HU3Kas npu 12,99 mc, umo ykazwieaem na om3vieuugocms cucmemoi. Ilpu agpghexkmusnocmu coopa dannvix ¢ mpaguiom 22,96 16/4
003MO demoncmpupyem cnocobHocms K 00804bHO dhdekmueHomy coopy pereeanmmusix 0anhvix. Bausnue ymuoix unmepeenyuii ¢ 33,2% noouépkusaem
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ppexmusHocms cucmeMvl 60 GHeOpeHUU UHMeANeKMYaabHbiX unmepgenyuil. Kpome moeo, nponycknas cnocobnocme 314,67 koc ykaszvieaem Ha 6biCOKYIO
npouzeodumensrocmos OO3MO.

Ocepanuuenus. B mo epems kaxk OO3MO nokazvieaem 00Ha0ExcUsarOuiue pe3yabmamol, Heo0X00UMO NPUHAMb K C8e0eHUID ONPedeéHHble 02PaAHUUEHUS 8 IMOM
uccnedosanuu. OCHOBAHHAS HA MOOCAUPOBAHUU OYECHKA IMUX OAHHbIX He MOJICem 6 NOAHOL Mepe y4echb éce npobaemvl 6 okpyrcarouem mupe. Kpome moeo,
0000ueHUe pe3yabmamos 045 dueepcuukayuu 20poockux npobaem mpedyem oanvHeliuiux uccaedosanuii. Takue oepanuuenus, Kak npoodaemvl NepCoHANbHBIX
OaHHbIX U NOMEHYUANbHble meXHoA02UHecKUe bapbepbl, makKice credyem paccmampusams npu enedperuu OO3MO 6 npakmuyeckux cumyayusx.
3akarouenue. B 3axarouenue Onmumusuposarnnoe Obwecmeennoe 30oposve ¢ nomougplo Mawunnoeo ooyyerus (OO3MO) npedcmasasemcs KAk MOWHbLIL
UHCMPYMEHM MPAHCHOPMUPOBAHUS NPOUECCO8 00UECMBEeHH020 300p08bs 8 YMHbIX 20podax. HMccaedosanue oceeujaem eozmoxcnocmu OO3MO ons 3navu-
MeAbHO20 YCOBEPUIEHCMB0BAHUS 2ULUEHUMECKUX NPOMOKO0A08 U KOHMPOAs 3a2psa3HeHuUll, obecneyugas 6oaee 300p08YI0 U SK0A02UHECKU CIAOUAbHYIO cpedy Ha
2opodckux meppumopusix. [lpunumas 60 HUMaHUe onpedenéruble 02panuueHus: 0aHHO20 UCCAeO08AHUSL, CAe0Yem NPUHAMb, YMO OKOHYAMEAbHbIE Pe3yAbmambl
noouépkuearom nomeryuar OO3MO 6 pe6oatoyuoHHOM nPeobpa308arHuU NPAKMUK 00UeCmE8eHH020 300P08bs U 8KAa0e 8 61a20NnoAyHUe 20p00CK020 HaceAeHUs

8 9NOXY YMHBIX 20p0008.

Karouesvie caosa: ymubiii 20po0; oduecmeerHoe 300p08ve; MAWUHHOe 00yHeHue; MOHUMOPUHE 3aeps3HeHUL

Cobarodenue smuueckux cmanoapmos. Hccaedosanue He mpebyem 3aKAr04eHUs KOMUMema 6UoMeOUYUHKOL IMUKU UAU OpYeUxX OOKYMeHmMOo8.

Jlns nurupoBanus: Yaasikymap P. MammHHoe oOydeHue [Tt O0IIECTBEHHOTO 3M0POBbsI: ONTUMH3ALIMSI TATHEHMIECKUX MEPOTIPUSTHI I MOHUTOPUHT 3arpsi3HEHUI B YMHBIX
roponax. lueuena u canumapus. 2024; 103(3): 216—222. https://doi.org/10.47470/0016-9900-2024-103-3-216-222 https://elibrary.ru/giwvdk (in English)
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Introduction to Smart City and Public Wellness

The importance of public health in metropolitan areas cannot
be overstated, and the emergence of smart cities is revolutionizing
healthcare in new ways [1]. In 2022, almost 55% of the world’s
population lives in urban regions. Projections suggest that this
percentage increase to 68% by 2050. The growing trend of
urbanization highlights the need to use technology to improve
public health [2]. Given the circumstances, it is crucial to prioritize
enhancing hygiene protocols and pollution surveillance [3]. This
is particularly important since urban dwellers are consistently
subjected to pollution levels beyond the recommended limits
set by the World Health Organization (WHO) by an average of
15%. Smart cities are characterized by using digital technology
to optimize the effectiveness of urban services [4]. The predicted
value of the worldwide smart cities market is $3.48 trillion by 2026,
with a compound annual growth rate (CAGR) of 22.9%. Rapid
urban development highlights the need to prioritize public well-
being within the smart city framework [5]. The intersection of
the Internet of Things (IoT) [6], Artificial Intelligence (Al) [7],
and data analytics offers exceptional prospects for tackling health
concerns promptly.

Hygiene practices have a crucial role in avoiding the
transmission of illnesses. In smart cities, using hygiene solutions
enabled by the IoT has resulted in a significant 25% decrease
in infectious diseases. The pollution levels, characterized by an
average yearly concentration of Particulate Material (PM) 2.5
above 20 micrograms per cubic meter in several metropolitan
regions, need constant and careful surveillance. Elevated
concentrations of PM2.5 have been associated with a 15% rise
in respiratory ailments, emphasizing the need for prompt and
efficient pollution control measures. Efficiently improving
cleanliness habits and closely monitoring pollution levels are
essential for making facts-based decisions. Implementing
sophisticated methods, such as machine learning, enhances
pollution predictions’ accuracy by as much as 30%, facilitating
prompt actions. Optimization encompasses the process of
combining and using diverse data sources. In Hong Kong, the
Grid Long Short Term Memory (LSTM) model was successfully
used to attain high spatial-temporal resolution at the street level
[8]. This application significantly reduced the margin of error in
pollution estimations to less than 5%.

Conventional approaches often need to be revised when
confronted with the intricacies of metropolitan settings. The
drawbacks of human data gathering are apparent since standard
pollution monitoring methods have reported an alarming 30%
data error rate. To ensure complete public wellness policies are

created, there is a need for synchronization between hygienic
behaviours and pollution data. To overcome these obstacles, a
fundamental change in thinking is needed, focusing on the use of
real-time data analysis and the incorporation of smart technology
to create a public health management system that is more prompt
and precise.

The primary contributions are listed below:

* Advanced Machine Learning employs sophisticated methods
such as Grid LSTM, Support Vector Machine (SVM), and
Support Vector Regression (SVR) to assess air pollution levels
accurately.

* Practical Memory Handling addresses the constraints of
Recurrent Neural Networks (RNNs) by using LSTM layers,
which effectively preserve long-term memory.

* The Multi-Layered Structure utilizes several levels, including
distinct inputs, hidden LSTM layers, and an outcome layer, to
provide accurate and reliable prediction.

The following sections are organized in the given manner:
Section 2 examines the current body of research on air quality,
health, and optimization techniques. Section 3 introduces
Optimized Public Wellness using Machine Learning (OPWML)
in smart cities, focusing on monitoring pollution levels and
promoting cleanliness behaviours. Section 4 demonstrates the
simulation analysis and results of the OPWML system, highlighting
the efficacy of the suggested model. Section 5 summarizes the
study’s main influences and offers the following steps to improve
individualized air pollution surveillance and health management
in smart cities.

Literature Survey and Findings

The literature study explores the current body of research on
air quality, health, and optimization approaches in urban settings.
This section thoroughly evaluates techniques used to monitor
pollution and maintain cleanliness and their incorporation into
existing systems. It emphasizes the deficiencies and difficulties
associated with present methods.

Thakur et al. investigate the use of Smart Health and Wellness
in rural areas of India in their research [9]. Smart Health
and Wellness Promoting Villages (SHWPV) combines health
monitoring and wellness promotion in rural environments. The
course focuses on Iol' devices to monitor health and connect
with the community, emphasizing collecting real-time health
data. The findings demonstrate a significant enhancement of 20%
in health consciousness, a decline of 15% in avoidable illnesses,
and a substantial rise of 30% in community engagement with
wellness initiatives. Sinha et al. concentrate on developing energy-
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efficient smart cities that use the Green IoT [10]. The suggested
technique, Energy-Efficient Green Iol for Smart Cities (EEG
10T-SC), combines IoT devices with energy-saving strategies. This
approach utilizes smart power distribution networks and optimized
algorithms for energy use. The results indicate a 25% decrease in
energy use, a 20% enhancement in the efficiency of IoT devices,
and a 30% advancement in the city’s overall sustainability.

Blasi et al. provide a theoretical connection between smart
cities and Sustainable Development Goals (SDGs) [11]. Smart
Sustainable Development (SSD) highlights linking smart city
technology with SDGs. The system integrates data analytics
to evaluate the influence of smart solutions on sustainable
development. The findings demonstrate a 15% rise in the overall
alignment with the SDGs, a 10% advancement in environmental
sustainability, and a 25% improvement in social equality within
the framework of smart cities. Fadda et al. propose a strategy for
monitoring traffic and pollution in Cagliari using a Social Internet
of Things (SIoT) smart city framework [12]. SIoT for Traffic and
Pollution Monitoring (SIo[-TPM) combines social IoT devices
with systems that monitor traffic and pollution. The findings
indicate a significant 30% decline in traffic congestion, a 20% drop
in pollution levels, and a substantial 25% rise in public awareness
of air quality concerns in Cagliari.

Geropanta et al. examine the correlation between smart-
sustainable cities, well-being, and European urban design [13].
Smart-Sustainable City-Well-being-Urban Planning (SSCW-UP)
examines the convergence of smart city technology, sustainability
objectives, and urban planning tactics. The findings demonstrate
a 20% enhancement in well-being indices, a 10% boost in urban
planning efficiency, and a 25% correlation with UN Sustainable
Development Goals (SDGs) in European towns. Garcia et al.
introduce an IoT-based infrastructure for monitoring air quality in
industrial environments [14]. The SAQM IoT approach seamlessly
incorporates Iol sensors to continuously monitor air quality
in industrial environments. The findings demonstrate a 30%
decrease in levels of pollutants, a 15% increase in the accuracy of
continuous surveillance, and a 25% improvement in the safety of
the industrial setting.

Ullah et al. examine the management of risks in the
governance of sustainable smart cities using the Technological,
Organizational, and Environmental (TOE) framework [15].
The TOE-based Risk Management for Smart City Governance
(TOE-RMSG) incorporates the TOE aspects to evaluate risks.
The findings indicate a 20% decrease in risks associated with
governance, a 10% improvement in adherence to policies, and
a 30% boost in the overall resilience of the smart city. Liu et al.
concentrate on developing Smart Environment Design Planning
using Deep Learning (SEDP-DL) for smart cities [16]. The
SEDP-DL approach incorporates deep learning methods to
optimize the design of smart environments. The approach utilizes
convolutional neural networks to do visual analysis and optimize
planning. The findings indicate a noteworthy 25% enhancement
in the creation of urban green spaces, a significant 15% decrease
in energy consumption achieved via optimal planning, and a
substantial 20% rise in the overall sustainability of smart cities.
This section uncovers many smart city studies, including health,
long-term viability, air quality surveillance, and risk management.
The analysing different techniques and techniques emphasizes the
need for multidisciplinary solutions to tackle the intricate issues
encountered by smart cities.

Proposed Optimized Public Wellness using Machine
Learning

This section presents an all-encompassing OPWML strategy
specifically designed for smart cities. It combines sophisticated
machine learning methods, such as Grid LSTM, to improve
the accuracy of estimating air pollution at the street level. The
technique includes using portable sensors for real-time data
verification, individualized data collecting, and research on
smart information intervention. Its objective is to transform the
administration of public health in metropolitan areas.

OpuruHanbHas craTbs

Figure 1 illustrates the comprehensive strategy and technique.
Commencing in Year 1, the goal is to create Grid LSTM, a
sophisticated deep-learning model. This model accurately
estimates and predicts air pollution levels in Hong Kong with a
high level of detail in terms of space and time, specifically at the
street levels. It relies on proxy urban dynamics information and
employs specialized methods to address incomplete and unreliable
information. The model undergoes training and validation using
exposure data obtained from portable detectors (Objective 2).
Beginning in Year 2, it gathered five specific information categories:
personal contact, medical history, health awareness, activity, and
behavioural data. This information is collected from well-being
and non-healthy individuals in Hong Kong. It tries to retrieve
any missing information related to human involvement, such as
information on well-being perception. It uses innovative human-
computing techniques to confirm the accuracy and reliability of
the collected data (Objective 2). In Year 1, 150 adolescents with
asthma and 150 without health issues, aged between 12 and 18,
are enlisted to gather data in five categories. In Year 2, advanced
customized applications, advisors, and indexes are created
(Objective 3) to automatically collect tailored and synchronized
information and self-reported details (limited to health opinion)
for clinical research and health thinking analysis. These tools
aim to make investigating smart information prevention easier.
Wearable gadgets like the Mi Bands routinely gather information
on our recruiters’ behaviours and health status. For candidates
with asthma, extra health status information is obtained using
an e-spirometer. Individuals report their personal well-being
perceptions using mobile devices.

The impact of advice from the Advisor on choosing healthier
travel routes and guidance from the Advisor on medication
dosages is assessed. The analysing whether individuals change
their travel was done on the base on the direction and whether
asthmatics adhere to the recommended dosages measured
through an e-inhaler. Objective 4 involves studying personal
contact with PM(1.0, 2.5) and Nitrogen dioxide (NO,) on the
clinical well-being and wellness of young people with asthma
and appropriate citizens. The research is carried out in Year 2 as
a starting point clinical research, Year 3 as an intervention trial,
and Year 4 as an opposite effect research. Objective 5 of the study
involves individual competent data assistance in both subject
organizations. This includes a Year 2 baseline research, a Year
3 interference research, and a Year 4 reversed impact research.
These studies aim to determine if smart data assistance leads to
any changes in medicine and travel behaviour. The findings from
clinical research and interventions are utilized for evidence-based
decision-making, aiming to formulate more rational rules and
procedures that promote individualized air quality surveillance
and health control in Hong Kong over an extended period.

Context-aware air quality system

This system is structured with three levels, as shown in Figure
2. The three layers in question are the Data Level, Logic Level,
and Visualisation Level. The Backend and Frontend levels serve
only as meta-layers in the proof-of-concept development of the
Air Quality Index (AQI).

The data layer obtains the necessary statistics to support
the characteristics of the underlying model via a third-party
Application Programming Interface (API) for AQ, incidents
of fire, and traffic volume statistics, as well as from Structured
Query Language (SQL) datasets and user-provided material.
The logic layer consists of three components: (I) the context-
aware modelling component, which transforms the raw details
into environment features that can be used, (II) the forecasting
method component, which performs data evaluation, including
prediction, on the environment features to enhance the existing
details, and (I11) the AQI component.

The API component consists of two connections: a RESTful
Hypertext Transfer Protocol (HTTP) API for periodic data transfer
with the frontend components and a WebSocket (WS) connection
for push notifications from the backend servers to user endpoints.
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The frontend level consists of a single sub-layer responsible for the
context-aware visualization of AQ information. The Visualisation
Level consists of three components: (I) the API customers, which
converts incoming server data into recall things; (II) the Situational
Thinking component, which corresponds contextual contends to
actual incidents; and (III) the end-user gadget opinions; where a
graphical representation of the occurrences is displayed.

Figure 2 showcases the gadgets and structures utilized for the
initial development of the AQI platform. PostGIS is employed
for spatial searches to calculate the separation between users and
fire events. The Python machine learning platform Keras (with
TensorFlow backing) creates reasoning functions like prediction.
The API components are built using Django Rest System for the
RESTful API and Django Channels, together with the in-memory
repository Redis for the WebS interfaces. The React]S framework
was used to construct the frontend level.

Air Quality Index Computation

AQI is considered a simplified and standardized method
to assess air quality in their local area using a single number,
colour, and explanation. The specific amounts and components
of the contaminants determined the health effects of contact with
external air pollution. The primary air pollutants found in urban
areas are Sulphur dioxide (SO,), PM or Particles, Ozone (Os),
Carbon Monoxide (CO), Volatility Organic Chemicals (VOCs),
insecticides and metallic substances, and NO,. The concept of
the index composition was introduced inside the Swachh Bharat
Mission, which aims to promote cleanliness. The air quality
measurements are determined by the levels of eight specific
pollutants, which include particulates with a size smaller than
2.5 um (PM;s), Os;, SO,, PM with a size smaller than ten um
(PMy), NO,, CO, lead (Pb), and ammonium (NHj).

Pre-processing. The data is extracted from the Database
and then subjected to preprocessing to eliminate unnecessary
data. A filtering strategy is used to prepare the supplied data,
thereby removing extraneous information. The normalization
technique is employed in the initial processing phase, efficiently
eliminating and substituting undesired and absent data. The
primary benefit of these techniques lies in the assumption that
gathering forecasts from classifications enhances the identification
of category distortion and is well-suited for input information.
The unprocessed information is subjected to pre-processing to
get material free from noise, which frequently obscures important
facts or results in the loss of evidence.

Feature extraction. A feature extraction technique determines
the extraction characteristics from the information being analysed.
When analysing statistical appearance, texture characteristics are
assessed basing on the statistical distribution of the recorded
intensities pairings at a specific location, comparing every single
one in the dataset. Information is classified into first-order,
second-order, and higher-order averages based on the total number
of intensities pictures (points) in all groupings. The Gray Level
Co-occurrence Matrix (GLCM) extracts a second-order statistical
texture characteristic. This is used for a diverse array of purposes.
The associations among at least three pixels are considered higher
and third-order patterns. These theoretical possibilities are rarely
typically realized due to the challenges of translation and the time
required for calculations. Therefore, using the GLCM-based
feature collection method successfully gathers characteristics.

The GLCM method is used to extract statistical texture
features of the second level. The approach has been applied in
numerous applications. Third, higher-order textures detect the
relationship of three or more cells. The GLCM is a mathematical
function that is often successful at eliminating artifacts. The visual
quality is very discernible. The image was extracted for analysis.
Utilize the GLCM to destroy the usefulness of the feature. In an
accurate differential region, GLCM defines the periodicity of the
pixels. The inquiry focuses on the individual pixel, while another
image is called the y path x, with its neighbouring value detachment
denoted as m. m acquires a solitary value, and y might provide
directed advantages. The earned direction value might eliminate

the features of the pictures used in the separation procedure. The
GLCM processes are configured using Equation (1).

R(k, 1) = o) )

__Flelxy) |
ST INIEZ)!

A frequency vector, denoted as F, provides the frequencies of
different components in a photo. k, 1, and x describe a specific
component’s periodicity corresponding to pixel values of y. The
variable R provides the characteristics of the picture. (k, 1) refers
to the element at position k and 1. Lastly, y represents a normalized
constant—several properties derived by applying the GLCM.
Entropy encompasses comprehensive details on the characteristics
of the items utilized in compressing the photos, as shown in
Equation (2).

E = - %5 X% RUIog(RLY)) . o)

R (I, y) denotes the frequency of the characteristics R,
whereas N indicates a constant value that remains constant. The
angle moment was calculated by aggregating the acquired data
utilizing the GLCM to assess the image’s level of uniformity,
whether large or small — a decrease in accuracy results in a rise in
angular momentum. The photographs are typically evaluated for
consistency using Equation (3).

AM =35 B RWY) (€))

The predicted characteristics are denoted R(l,y). The
contrasts determine the level of intensity in the pictures. The
distinction between the regions is typically evaluated using
Equation (4).

C=TL I RUY), )

The actual characteristics are denoted . The Inversed Difference
Moment (IDM) is a commonly used metric for assessing overall
uniformity, as shown in Equation (5).

IDM = TN 315 1+ (n— 0)*R(LY). ®)

The actual characteristics are denoted , the feature is denoted
n, the output is denoted o, and the total size is denoted N. Energy
is utilized to assess the feasibility of returns with many square
elements, as shown in Equation (6).

E =350 s RBUy) (6)

The predicted characteristics are denoted R(, ¥). The
variability (V) is readily determined as the divergence of the grey
level readings from the average, as shown in Equation (7).

V=S5 NS Ry - y?, ™

The predicted characteristics are denoted R(L,y). The sum
average refers to the rate of interconnections among pixels, which
can typically be computed using Equation (8).

A=3Y, NR; , ®

Once the characteristics have been extracted (R), they are
shown visually. The n value of the critical component is less than
or equal to the starting values. Correlation indicates that where
there is duplication in knowledge, data is condensed by reducing
this repetition.

Classification using SVR with LSTM model

An inherent limitation of RNNs is their inability to retain
long-term memory. Due to the complexity of the sequences, it
could prove challenging to transfer knowledge from the previous
stage to address the ones effectively. RNN encounter the challenge
of fading gradients complexity. During the learning stage, the
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Fig. 6. Smart intervention impact analysis of public health and pollution.

Puc. 6. AHanM3 BANSAAHUS YMHbIX MHTEPBEHLMUIA Ha 06LLECTBEHHOE 3[0PO0-
BbE U1 3arps3HeHms.

weights of a network are adjusted based on a partial derivative of
the variance function concerning the present value. During an
inevitable repetition, the weight change is prevented when the
gradient is tiny. This compels the network to cease acquiring more
knowledge. Thus, the RNN experiences a loss of memory.

The limitation of a recurrent neural network is resolved by
using LSTM. LSTM devices are potent for preserving lengthy
short-term memory. This method is very efficient at analysing
previous data series and accurately predicting future parts of the
series. The SVR model uses the fundamental SVM algorithm.
The fundamental concept behind SVM is to transform training
information using a function that maps it from the original input
area to a higher-dimensional characteristic space. A distinct
hyperplane is constructed in the features, thus maximizing the
margin between data points. The concept of the regression issue
is to identify a function that can accurately estimate forthcoming
values. SVM and SVR were extensively used in the prediction
models.

LSTM utilizes memory blocks that establish connections across
layers. The block is equipped with gates that determine the state of
the block. The gates are responsible for the retention or retrieval
of data during training. This can be achieved by using a function
called sigmoid. The output of this formula is constrained to the
range between 0 and 1. When information is increased by 0, it is
disregarded; when it is increased by 1, it is retained. The LSTM
algorithm employed in our suggested system is outlined as follows:

Step 1: Preprocessing of particulate material and meteorological
information involves the following steps:

* Examining, visualizing, and removing any inconsistencies or
errors in the dataset.

» Standardizing the dataset and configuring the look-back
period for LSTM training.

Step 2: Create an LSTM system with a unique input, four
concealed layers, and an outcome layer that predicts one value.

+ Utilize the sigmoid feature in the LSTM layer.
* Perform network training with 64 iterations and a group size of 32.

OpwurvHanbHas cratbst
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Fig. 7. Throughput analysis of public health and pollution.

Pue. 7. MponyckHas cnoco6HOCTb (K6/C) aHanmsa 061LeCcTBEHHOM0 340p0-
Bbfl U 3arpA3HEHMNIA.

Step 3: Generate predictions for the test database using the
trained system.

The network’s structure comprises three levels, with the visible
layer containing a single input. The concealed block consists of four
LSTM components, and the resultant layer generates a single-value
forecast. The information gathered from the database is then fitted
into the framework. Based on this, it is possible to determine the
efficacy of both the testing and training databases. The algorithm
simultaneously makes forecasts on the training and testing databases.
Based on this, the model’s visual acuity is determined.

This section presents a proposal for implementing OPWML
in smart cities. The focus is on accurately estimating air pollution
levels using Grid LSTM, which allows for high-resolution
analysis—introducing portable sensors and extensively tailored
data-collecting methodologies for real-time validation. This
section presents research on a smart data treatment to assess the
effects on personal medicine and traveling habits. The goal is to
improve data-driven decision-making to manage health problems
in metropolitan areas.

Simulation Analysis and Outcomes

The simulation is performed on a cluster of 20 nodes
containing a quad-core CPU (Intel Xeon E5-2670, 2.60 GHz)
and 64 GB of RAM. The network latency is consistently below 1
ms to enable real-time data exchange. OPWML requires a robust
computational environment, with a minimum GPU specification
of NVIDIA Tesla V100 for practical model training. A distributed
storage system, capable of storing ten terabytes of data, guarantees
smooth data management throughout the simulation. The study
used an extensive dataset of two years of air quality data collected
from 100 monitoring sites in a technologically advanced urban
area. The dataset contains hourly measurements of PM,s, NO,,
and SO, levels, totalling more than 1 million data points. This
large quantity of data ensures statistical significance in the training
and validation of the model.
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_ Rural Semi-Urban Urban
Metric / Vinmukatop Cenbckas Toponckoro It
opox
MECTHOCTD THIA
Air Quality (ug/m?) PM,; 17.88 22.06 26.05
Kauectso Bosnyxa (ur/m’) PM, 10.22 19.86 24.95
NO, 9.96 14.77 18.39
AQI / Nnpekc kayecTBa BO3myxa 42.9 56.27 71.51
Green Spaces Percentage (%) / lpouenTs (%) 31.14 22.37 17.42
3enEénbie MPOCTpaHCTBa Proximity (meters) / ITpussizka K MeCTHOCTH (M) 501.3 301.5 202.3
Noise Levels Decibels / euunGesns 45.36 55.68 65.43
YpoBHMU 1IymMa
Infrastructure Road Condition Index / Mnnekc cocrosinust 1opor 77.51 87.81 90.28
Nrbpactpykrypa Public Transportation Availability (buses/km?) 3.86 5.55 11.17
J10CTYIHOCTD OOIIECTBEHHOTO TPaHCHOpPTa (aBTOOYCOB/KM?)
Safety and Security Crime Ratio (per 1,000 population) 5.43 10.37 20.78
besonacHocTh 1 oxpaHa OtHoliuenue npectyruienuit (Ha 1000 HacesneHust)
Housing Conditions Housing Affordability (%) / JocrynHoe xunbé (%) 20.44 32.98 41.5
Yeoust IpOXNBaHHS Building Age (years) / Bpems noctpoiiku (j1et) 27.32 16.91 11.28
Healthcare Facilities (per 10 km?) Number of Healthcare Facilities 1.6 4.55 7.77
Vupexnenust 3npaBooxpaHeHust (Ha 10 km?) Yucno yupekaeHuit 3mpaBooXpaHeHMsI
Health Outcomes Lower Medium Higher
[Toka3zarenu 310pOBbs Huxe CpenHuii Boiie
Educational Resources (per 20 km?) Educational Institution Density 3.96 4.76 6.48
Oo6pa3soBarenbHble yupexkaeHus (Ha 20 km?) TTnoTHOCTH 006pa3oBaTeIbHBIX OpraHU3aLuii
University Quality Indicator Lower Medium Higher
NHnukaTop KauecTBa yHUBEPCUTETOB Huxe CpenHuii Boie
Environmental Sustainability (%) Recycling Rate / Temmbl epepaboTku 17.94 25.18 36.51
Skororueckas crabHIbHOCTD (%) Renewable Energy Usage 12.98 22.96 31.95
Kcrosnb3oBaHie BO30OHOBIISIEMbIX HCTOYHUKOB SHEPIUT
Cultural and Social Opportunities Cultural Venue Density / [T10THOCTbh KOHIIEPTHBIX 3aJ10B 1.3 2.39 3.62
2
{per km) Community Engagement Indicator Lower Medium Higher
KysbsrypHble 1 001IECTBEHHbIE u e Hitxe Cre N Borme
OpraH¥3aIH (Ha KM?) HIMKATOP BOBJIEYEHHOCTH HACEICHMUSI X pemHMii BILLI
Employment Opportunities (%) Unemployment Ratio / Koadhdutment 6e3paboTuiibt 10.35 7.46 4.05
[poussonctsa (%) Job Marketplace / PeiHoK Tpyna Lower Medium Higher
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Technological Infrastructure (MBPS) Internet Data rate / Tpaduk nanubix B UHTepHeTe 6.75 15.24 52.99
(Tﬁ‘gv?f/%r)mecmﬂ UHGPaCTPyKTypa Technology Integration Indicator Lower Medium Higher
NHaukaTop MHTErpalny TEXHOJOT Uit Hwxe CpenHuii Bhoiiire

Figure 3 displays the Estimation Accuracy data for several
iterations, demonstrating the performance of each technique.
OPWML showed superior performance compared to other ways,
achieving an accuracy of 86.76%. This is a substantial increase when
compared to the average accuracy of 81.15% across all methods.
The exceptional efficacy of OPWML is ascribed to its sophisticated
machine learning methodologies, including the amalgamation of
LSTM and SVR models, enabling enhanced preservation of long-
term memory and precise forecasting. The proposed OPWML
approach utilizes RNN to capture temporal connects, LSTM to
realize long-term memory, SVM to support robust categorization,
and SVR to permit exact regression. Combining these techniques,
the proposed OPWML methods ensure the maximum accuracy in
estimating air quality.

Figure 4 depicts the Real-time Validation Delay outcomes
for several iterations, showcasing the delay performance of each
approach. OPWML exhibited improved performance with a mean
delay of 12.99 ms, outperforming the overall average delay of 18.61
ms across all methods. OPWML reduces validation delay using
its advanced RNN utilization, efficiently collecting temporal
dependencies. It holds long-term memory through LSTM, assures
a robust categorization for optimum SVM decision-making, and

provides accurate and timely estimations in air quality estimation
through SVR regression.

Figure 5 illustrates the results of Data collecting Efficiency
for several iterations, demonstrating each strategy’s effectiveness
in data collecting. OPWML exhibited exceptional efficacy with a
mean data collection rate of 22.96 GB/hour, exceeding the overall
average rate of 9.96 GB/hour across all methods. OPWML uses
RNN to gather sequential dependencies, where LSTM holds
temporal sequences, SVM maximizes classification accuracy, and
SVR improves the precision of continuous data collection. This
combination of techniques maximizes efficiency and accuracy in
air quality monitoring in smart cities.

Figure 6 exhibits the outcomes of Smart Intervention Impact
for several iterations, showcasing the effect of smart interventions
for each approach. OPWML had a significant effect, averaging
33.2%, more than the average impact of 15.12% in all other
methods. OPWML stands out in evaluating the effect of smart
interventions because of the RNN’s capability to gather intricate
patterns. The LSTM increases pollution impact evaluation by
offering a nuanced understanding. The SVM helps in creating
accurate decisions that affect public health interventions in a good
manner. The SVR contributes to accurate evaluation metrics,
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ensuring precise and fast assessments. Together, these techniques
ensure maximum results in public health and pollution control.

Figure 7 depicts the Throughput outcomes for many iterations,
displaying the rates at which data is sent for each approach.
OPWML consistently exhibited superior throughput, averaging
314.67 kbps, exceeding the average of 162.19 kbps across all other
methods. OPWML performs better throughput using RNN to
analyze sequential data, LSTM to gather temporal complexities,
SVM to maximize categorization throughput, and SVR to
improve continuous throughput. These techniques ensure the
higher-quality public health and pollution control outcomes
by enhancing intervention decision speed and providing precise
evaluation metrics.

Table shows the quantitative analysis of the living conditions
in rural, semi-urban, and metropolitan regions. Urban areas have
elevated levels of air pollution, with PM2.5 (26.05 ug/m?), PM10
(24.95 ug/m?), NO2 (18.39 ng/m?), and AQI (71.51). Rural regions
have the largest proportion of green space (31.14%) and the greatest
distance from one another (501.27 meters), while urban areas
have the lowest proportion (17.42%) and are closest to each other
(202.3 meters). Urban regions have elevated noise levels at 65.43
dB, yet boast superior infrastructure, and a road quality rating of
90.28. Rural locations provide comparatively more advantageous
conditions in terms of safety and security, housing affordability,
and healthcare amenities. Urban regions show better characteristics
in educational resources, environmental sustainability, cultural
possibilities, economic prospects (with a lower unemployment
rate of 4.05% and a diverse labour marketplace), and technical
infrastructure (offering a high-speed internet connection of 52.99
MBPS with advanced technology integration).

The proposed OPWM L demonstratesexceptional performance,
with an average Estimation Accuracy of 86.76%, Real-time
Validation Delay of 12.99 ms, Data Collection Efficiency of 22.96
GB/hour, Smart Intervention Impact of 33.2%, and Throughput
of 314.67 kbps. The results highlight the effectiveness of OPWML
in improving public health in smart cities, demonstrating its

OpurvHanbHas cratbst

capacity to offer precise predictions, reduce validation delays,
improve data collection effectiveness, optimize the effect of smart
interventions, and boost data transfer rates. This makes it a robust
solution for urban well-being.

Conclusion and Future Scope

To effectively tackle public wellness in smart cities, a
comprehensive strategy incorporating cutting-edge technology
to enhance hygiene behaviours and monitor pollution levels
is required. The importance of these factors cannot be
exaggerated since they directly influence city residents’ physical
and mental health. Smart cities with advanced infrastructure
provide an excellent opportunity to transform public well-
being. Optimizing becomes crucial to exploit the potential of
these technical developments fully. The suggested OPWML
delivers a new approach that utilizes machine learning methods
to improve the effectiveness of hygiene practices and pollution
monitoring in smart cities. OPWML’s characteristics, such
as real-time validation, efficient data collecting, impactful
smart interventions, and high throughput, represent a notable
progression in the area. The simulation results highlight the
effectiveness of OPWML, with significant metrics including
an average estimate accuracy of 86.76%, a real-time validation
latency of 12.99 ms, a data collection efficiency of 22.96 GB/
hour, a smart intervention impact of 33.20%, and a throughput
of 314.67 kbps. Although there have been positive results,
ongoing difficulties still need to be addressed, such as ensuring
strong data protection and dealing with the ever-changing
nature of urban settings. Future research should prioritize
the enhancement of OPWML to address the changing urban
difficultieswhile including real-world scalability and integration.
It is essential to engage in multidisciplinary partnerships
and embrace new technologies to maintain the influence of
OPWML in the dynamic environment of smart cities and public
well-being.
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Fig. 3. Estimation accuracy analysis of public health and pollution.
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—@®— EEGIoT-SC / BbicokoadhdekTBHasA 3enéHasi aHepreTuka — MIHTepHeT Beler — YMHbIe ropoaa

—&— SSD / PasymHoe ycToitumBoe passutue

—¥— SloT-TPM / O6LueCTBEHHbI NHTEpHET Belleii AN MOHUTOPUHIA Tpaduka U 3arpsisHeHUi

—@®— SSCW-UP / YMHbI cTabunbHbli ropoa — Bnarononyyve — Mopogckoe nnaHupoBaHue

—— SAQMIoT / NocynapcTBeHHas agMUHUCTPaLMs MO YNpaBleHnto kayecTBoM VIHTepHeTa Bellei

~p— TOE-RMSG / TexHonornyeckoe, yrnpaBrieH4eckoe 1 3KosorMyeckoe ynpasrieHne puckamu npaBuTensCcTBa YMHOMO ropoaa
—@— SEDP-DL / YMHoe nnaHupoBaHue 3KOMorM4eckoro AnsaiiHa ¢ Ucnonb3oBaHueMm rmy6okoro obyyeHust

—#— OPWML / OnTumnsnpoBaHHoe obLLECTBEHHOE 300POBbE, UCMOMb3YoLee MallMHHOe 0byyeHne

Fig. 4. Real-time validation delay analysis of public health and pollution.
Puc. 4. AHanu3 3afepXxKun Banupaunn 30p0oBbA HACENEHUA 1 3arPA3HEHNIA B PeanbHOM BPEMEHN.
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OPWML / OnTvmunanpoBaHHoe 06LLECTBEHHOE 300POBbE, UCMONb3YHoLLee MaluMHHOe 0by4YeHne
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Fig. 5. Data collection efficiency analysis of public health and pollution.
Puc. 5. AHanu3 atheKTMBHOCTU CH0PA JAHHbIX O 3[0POBbE HACENEHUSA U 3ArPASHEHNAX.
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